Chemorheological response of elastomers at elevated temperatures: Experiments and simulations

نویسندگان

  • John A. Shaw
  • Alan S. Jones
  • Alan S. Wineman
چکیده

An experimental study and a method for simulating the constitutive response of elastomers at temperatures in the chemorheological range (90–150 1C for natural rubber) are presented. A comprehensive set of uniaxial experiments for a variety of prescribed temperature histories is performed on natural rubber specimens that exhibit finite elasticity, entropic stiffening with temperature, viscoelasticity, scission, and oxygen diffusion/reaction effects. The simulation approach is based on a multi-network framework for finite elasticity, isothermal incompressibility, thermal expansion, and temperature-induced degradation. The model extends previous work to account for kinetics of scission for arbitrary time-varying temperature histories and incorporates the effects of viscoelastic relaxation and diffusionlimited oxidative scission. The model is calibrated to experiments performed on a commercially-available filled natural rubber material, and numerical simulations are compared favorably to experiments for a variety of temperature histories. r 2005 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Thermally Induced Chemorheological Changes on the Inflation of Spherical Elastomeric Membranes

When an elastomeric material is deformed and subjected to temperatures above some chemorheological value Tcr (near 100-C for natural rubber), its macromolecular structure undergoes time and temperature dependent chemical changes. The process continues until the temperature decreases below Tcr. Compared to the virgin material, the new material system has modified properties (often a reduced stif...

متن کامل

Application of T-shape Friction T test for Ti-6Al-4V Alloy at Elevated Temperatures

There are several parameters that have significant influence in metal forming process. One of the most important of them is friction coefficient. Friction can change the pattern of metal flow and the force needed for deformation. It is necessary to determine the friction coefficient to study the effect of friction on metal forming process. This study is concerned with numerical and experimental...

متن کامل

Influences of NCO/OH and triol/diol Ratios on the Mechanical Properties of Nitro-HTPB Based Polyurethane Elastomers

The present study describes the effect of NCO/OH and triol/diol ratios on the mechanical properties of Nitro functionalized Hydroxyl-terminated polybutadiene (Nitro-HTPB) elastomers. The progress of the cure reaction of Nitro-HTPB and toluene diisocyanate (TDI) is evaluated by following up the variations in the IR absorption bands of the NCO stretching and the CO ...

متن کامل

Temperature Effect on Mechanical Properties of Top Neck Mollusk Shells Nano-Composite by Molecular Dynamics Simulations and Nano-Indentation Experiments

Discovering the mechanical properties of biological composite structures at the Nano-scale is much interesting today. Top Neck mollusk shells are amongst biomaterials Nano-Composite that their layered structures are composed of organic and inorganic materials. Since the Nano indentation process is known as an efficient method to determine mechanical properties like elastic modulus and hardness ...

متن کامل

Hydrodynamics of a Gas-Solid Fluidized Bed at Elevated Temperatures Using the Radioactive Particle Tracking Technique

Effect of temperature on hydrodynamics of bubbling gas-solid fluidized beds was investigated.  Experiments were carried out in the range of 25-600 ºC and different superficial gas velocities in the range of 0.17-0.78 m/s with sand particles. Time-position trajectory of particles was obtained by radioactive particle tracking technique. These data were used for determination of mean velocitie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005